MAILFOOT
NAME
SYNOPSIS
DESCRIPTION
EXIT STATUS
COMMANDS
USAGE
SCRIPT INTERFACE
ENVIRONMENT
NOTES
WARNING
SOURCE
AUTHOR
SEE ALSO
NAME
mailfoot
− a full-online-ordered-training simulator for use
with dbacl.
SYNOPSIS
|
mailfoot |
|
command [
command_arguments ] |
|
DESCRIPTION
mailfoot
automates the task of testing email filtering and
classification programs such as dbacl(1). Given a set
of categorized documents, mailfoot initiates test runs to
estimate the classification errors and thereby permit fine
tuning of the parameters of the classifier.
Full Online
Ordered Training is a learning method for email classifiers
where each incoming email is learned as soon as it arrives,
thereby always keeping category descriptions up to date for
the next classification. This directly models the way that
some email classifiers are used in practice.
FOOT’s
error rates depend directly on the order in which emails are
seen. A small change in ordering, as might happen due to
networking delays, can have an impact on the number of
misclassifications. Consequently, mailfoot does not
give meaningful results, unless the sample emails are chosen
carefully. However, as this method is commonly used by spam
filters, it is still worth computing to foster comparisons.
Other methods (see mailcross(1),mailtoe(1))
attempt to capture the behaviour of classification errors in
other ways.
To improve and
stabilize the error rate calculation, mailfoot
performs the FOOT simulations several times on slightly
reordered email streams, and averages the results. The
reorderings occur by multiplexing the emails from each
category mailbox in random order. Thus if there are three
categories, the first email classified is chosen randomly
from the front of the sample email streams of each type. The
second email is also chosen randomly among the three types,
from the front of the
streams after the first email was removed. Simulation stops
when all sample streams are exhausted.
mailfoot
uses the environment variable MAILFOOT_FILTER when
executing, which permits the simulation of arbitrary
filters, provided these satisfy the compatibility conditions
stated in the ENVIRONMENT section below.
For
convenience, mailfoot implements a testsuite
framework with predefined wrappers for several open source
classifiers. This permits the direct comparison of
dbacl(1) with competing classifiers on the same set
of email samples. See the USAGE section below.
During
preparation, mailfoot builds a subdirectory named
mailfoot.d in the current working directory. All needed
calculations are performed inside this subdirectory.
EXIT STATUS
mailfoot
returns 0 on success, 1 if a problem occurred.
COMMANDS
prepare
size
Prepares a subdirectory named
mailfoot.d in the current working directory, and populates
it with empty subdirectories for exactly size
subsets.
add category [
FILE ]...
Takes a set of emails from
either FILE if specified, or STDIN, and associates them with
category. The ordering of emails within FILE
is preserved, and subsequent FILEs are appended to
the first in each category. This command can be repeated
several times, but should be executed at least once.
|
clean |
|
Deletes the directory mailfoot.d and all its
contents. |
|
run |
|
Multiplexes randomly from the email streams added
earlier, and relearns categories only when a
misclassification occurs. The simulation is repeated
size times. |
summarize
Prints average error rates for
the simulations.
plot [ ps |
logscale ]...
Plots the number of errors over
simulation time. The "ps" option, if present,
writes the plot to a postscript file in the directory
mailfoot/plots, instead of being shown on-screen. The
"logscale" option, if present, causes the plot to
be on the log scale for both ordinates.
review truecat
predcat
Scans the last run statistics
and extracts all the messages which belong to category
truecat but have been classified into category
predcat. The extracted messages are copied to the
directory mailfoot.d/review for perusal.
testsuite list
Shows a list of available
filters/wrapper scripts which can be selected.
testsuite select [
FILTER ]...
Prepares the filter(s) named
FILTER to be used for simulation. The filter name is
the name of a wrapper script located in the directory
@PKGDATADIR@/testsuite. Each filter has a rigid
interface documented below, and the act of selecting it
copies it to the mailfoot.d/filters directory. Only
filters located there are used in the simulations.
testsuite deselect [
FILTER ]...
Removes the named filter(s)
from the directory mailfoot.d/filters so that they
are not used in the simulation.
testsuite run [
plots ]
Invokes every selected filter
on the datasets added previously, and calculates
misclassification rates. If the "plots" option is
present, each filter simulation is plotted as a postscript
file in the directory mailfoot.d/plots.
testsuite status
Describes the scheduled
simulations.
testsuite summarize
Shows the cross validation
results for all filters. Only makes sense after the
run command.
USAGE
The normal
usage pattern is the following: first, you should separate
your email collection into several categories (manually or
otherwise). Each category should be associated with one or
more folders, but each folder should not contain more than
one category. Next, you should decide how many runs to use,
say 10. The more runs you use, the better the predicted
error rates. However, more runs take more time. Now you can
type
Next, for every
category, you must add every folder associated with this
category. Suppose you have three categories named
spam, work, and play, which are
associated with the mbox files spam.mbox,
work.mbox, and play.mbox respectively. You
would type
% mailfoot add
spam spam.mbox
% mailfoot add work work.mbox
% mailfoot add play play.mbox
You should aim for a similar number of emails in each
category, as the random multiplexing will be unbalanced
otherwise. The ordering of the email messages in each
*.mbox |
file is important, and is
preserved during each simulation. If you repeatedly add to
the same category, the later mailboxes will be appended to
the first, preserving the implied ordering. |
You can now
perform as many FOOT simulations as desired. The multiplexed
emails are classified and learned one at a time, by
executing the command given in the environment variable
MAILFOOT_FILTER. If not set, a default value is used.
% mailfoot run
% mailfoot summarize
The testsuite
commands are designed to simplify the above steps and allow
comparison of a wide range of email classifiers, including
but not limited to dbacl. Classifiers are supported
through wrapper scripts, which are located in the
@PKGDATADIR@/testsuite directory.
The first stage
when using the testsuite is deciding which classifiers to
compare. You can view a list of available wrappers by
typing:
% mailfoot
testsuite list
Note that the
wrapper scripts are NOT the actual email classifiers, which
must be installed separately by your system administrator or
otherwise. Once this is done, you can select one or more
wrappers for the simulation by typing, for example:
% mailfoot
testsuite select dbaclA ifile
If some of the
selected classifiers cannot be found on the system, they are
not selected. Note also that some wrappers can have
hard-coded category names, e.g. if the classifier only
supports binary classification. Heed the warning
messages.
It remains only
to run the simulation. Beware, this can take a long time
(several hours depending on the classifier).
% mailfoot
testsuite run
% mailfoot testsuite summarize
Once you are
all done, you can delete the working files, log files etc.
by typing
% mailfoot
clean
SCRIPT INTERFACE
mailfoot
testsuite takes care of learning and classifying your
prepared email corpora for each selected classifier. Since
classifiers have widely varying interfaces, this is only
possible by wrapping those interfaces individually into a
standard form which can be used by mailfoot
testsuite.
Each wrapper
script is a command line tool which accepts a single command
followed by zero or more optional arguments, in the standard
form:
wrapper command
[argument]...
Each wrapper
script also makes use of STDIN and STDOUT in a well defined
way. If no behaviour is described, then no output or input
should be used. The possible commands are described
below:
|
filter |
|
In this case, a single email is expected on STDIN, and a
list of category filenames is expected in $2, $3, etc. The
script writes the category name corresponding to the input
email on STDOUT. No trailing newline is required or
expected. |
|
learn |
|
In this case, a standard mbox stream is expected on
STDIN, while a suitable category file name is expected in
$2. No output is written to STDOUT. |
|
clean |
|
In this case, a directory is expected in $2, which is
examined for old database information. If any old databases
are found, they are purged or reset. No output is written to
STDOUT. |
describe
IN this case, a single line of
text is written to STDOUT, describing the filter’s
functionality. The line should be kept short to prevent line
wrapping on a terminal.
bootstrap
In this case, a directory is
expected in $2. The wrapper script first checks for the
existence of its associated classifier, and other
prerequisites. If the check is successful, then the wrapper
is cloned into the supplied directory. A courtesy
notification should be given on STDOUT to express success or
failure. It is also permissible to give longer descriptions
caveats.
|
toe |
|
Used by mailtoe(1). |
|
foot |
|
In this case, a list of categories is expected in $3,
$4, etc. Every possible category must be listed. Preceding
this list, the true category is given in $2. |
ENVIRONMENT
Right after
loading, mailfoot reads the hidden file .mailfootrc
in the $HOME directory, if it exists, so this would be a
good place to define custom values for environment
variables.
MAILFOOT_FILTER
This variable contains a shell
command to be executed repeatedly during the running stage.
The command should accept an email message on STDIN and
output a resulting category name. On the command line, it
should also accept first the true category name, then a list
of all possible category file names. If the output category
does not match the true category, then the relevant
categories are assumed to have been silently
updated/relearned. If MAILFOOT_FILTER is undefined,
mailfoot uses a default value.
TEMPDIR
This directory is exported for
the benefit of wrapper scripts. Scripts which need to create
temporary files should place them a the location given in
TEMPDIR.
NOTES
The
subdirectory mailfoot.d can grow quite large. It contains a
full copy of the training corpora, as well as learning files
for size times all the added categories, and various
log files.
FOOT
simulations for dbacl(1) are very, very slow (order n
squared) and will take all night to perform. This is not
easy to improve.
WARNING
Because the
ordering of emails within the added mailboxes matters, the
estimated error rates are not well defined or even
meaningful in an objective sense. However, if the sample
emails represent an actual snapshot of a user’s
incoming email, then the error rates are somewhat
meaningful. The simulations can then be interpreted as
alternate realities where a given classifier would have
intercepted the incoming mail.
SOURCE
The source code
for the latest version of this program is available at the
following locations:
http://www.lbreyer.com/gpl.html
http://dbacl.sourceforge.net
AUTHOR
Laird A. Breyer
<laird@lbreyer.com>
SEE ALSO
bayesol(1)
dbacl(1), mailcross(1), mailinspect(1),
mailtoe(1), regex(7)
|